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Abstract. In this paper a method for solving biharmonic problems involving a mixed numerical-analytical
approach is described. The algorithm of this method is given and the efficiency of its application for the solution of
biharmonic problems is discussed. The recommendations about an application of this method for solving stationary
three-dimensional problems in the theory of elasticity are given.
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1. Introduction

By the end of the 19th century, the mathematical model for conservative linear three-
dimensional problems of static of deformable isotropic bodies was already completely formu-
lated. However, the exact solution for most of the problems (especially applied ones) in a strict
statement could be derived only in exceptional cases. This caused the fact that more simple
two-dimensional deformation models were widely used. These models allowed to solve actual
engineering problems with a reasonable degree of rigor and accuracy. Here we mention two
such problems: 1 – bending of a thin isotropic plate under normal loading, 2 – plane-strain
state of a thin plate.

The solution of these problems was reduced to solving a biharmonic problem with different
boundary conditions and different types of loading. The construction of the adequate solution
of the problem depended equally upon the engineering intuition of the researchers and on the
level of their mathematical knowledge and ingenuity. In the 20th century, especially during
the first half of it, a large group of outstanding ‘mathematical-engineers’ (or ‘engineering-
mathematicians’) were active. However, here we limit ourselves to refer to such names (in
alphabetical order) as Filon, Galerkin, Mitchell and Timoshenko who, in our view, have
forever entered into the history of engineering.

In the 20th century the approach to solving biharmonic problem was changed from
numerical-analytical tabulating the set of solutions or the physical simulation of the simplest
constructive elements to computational research of the strained state of constructions using
FEM or BEM. It can be stated that at present the numerical implementation of almost any
consistent computing algorithm is not so much a scientific as an economic problem, because
it depends on the accessibility to the necessary computer resources. Therefore, the following
question arises: why should we in the 21st century pay attention to an ‘elementary’ biharmonic
problem?

We consider that this problem is a fundamental component of that area of knowledge that
belongs to classical mathematical physics, mechanics of deformable bodies and engineering
mathematics. Analytical and numerical solutions of biharmonic problem obtained in the 20th
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century will still, for a long time, have significance as a reliable basis for testing when devel-
oping new effective methods for the numerical solution of multi-dimensional boundary-value
problems.

In this paper we discuss the solutions of a number of biharmonic problems. They were
selected to illustrate the features and efficiency of the method which we propose for the
solution of linear multi-dimensional problems in the mechanics of a deformable body. In this
paper the method is called ‘Advanced Kantorovich’s Method’. This method is the development
of the known Kantorovich’s Method of reducing of the 2D variational problems to ordinary
differential equations.

The paper is organized as follows: Section 2 presents the structure and the algorithm of the
proposed numerical-analytical method for solving a biharmonic problem. Section 3 discusses
the results of the solutions of some biharmonic problems obtained by using the advanced
Kantorovich method. Section 4 presents some general conclusions.

2. Foundation of the Advanced Kantorovich Method

It is possible to define the Advanced Kantorovich Method (AKM) as well as Kantorovich’s
method of reduction to ordinary differential equations as the class of approximate methods
for solving boundary-value problems.The origin of these methods may be associated with the
names of Galerkin, Bubnov, Ritz and Trefftz.

The two following steps must be executed when constructing a solution by these methods:
first, approximation of the required function by a final series of trial functions for a system
chosen beforehand and, secondly, solving of ‘the approximating problem’1 in the assumption,
that it can be solved without any problem with a required accuracy.

Let us consider how these stages are realized in AKM by an example of a solution of a
biharmonic problem:

Lu ≡ ��u = f, (1)

u = 0,
∂u

∂n
= 0 (2)

in the domain � = {|x| ≤ a, |y| ≤ b} (n is normal to the boundary of domain).
In a variational statement this problem is equivalent to the determination of a minimum of

the following functional:

J (u) = 1

2

a∫
−a

b∫
−b

[
(�u)2 − 2f u

]
dxdy. (3)

The required function u(x, y) in the first stage of AKM is presented by a linear combina-
tion of functions with separated variables:

u (x, y) ∼= FM (x, y) =
M∑
i=1

Xi (x) Yi (y), (4)

1The term is taken from [1, p. 189].
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where all functions Xi(x), Yi(y), (i = 1,M) are unknown.
Such a representation of the required function can be regarded as a generalization of

the approximating forms, which are characteristic ones for Galerkin-Ritz methods and Kan-
torovich’s method [2–4]. So, in the Galerkin-Ritz methods the function u(x, y) is approxi-
mated as follows:

u (x, y) ∼= FMN (x, y) =
M∑
i=1

N∑
j=1

aijϕi (x) ψj (y), (5)

where αij are unknown numerical coefficients and ϕi(x), ψj(y) are the trial functions, which
are usually part of some complete set. It is obvious that, if the eigenfunctions of the problem
(1), (2) are chosen as the trial functions, then representation (5) corresponds to a method of
expansion about the eigenfunctions.

Developing Galerkin’s ideas, Kantorovich has altered representation (5). Here, instead of
numerical coefficients αij , the functional coefficients Xi(x) were entered as unknowns, i.e.,
the form (5) was transformed to the following expression:

u (x, y) ∼= FM =
M∑
i=1

Xi (x)ψi (y). (6)

In [5, Section 4.3], by an example concerning Poisson’s equation, it is shown that approx-
imation (6) leads to greater solution accuracy than with approximation (5).

The introduction in representation (6) of functions of the second variable Yi(y) as un-
knowns generalizes Kantorovich’s approach and transforms it to the approximating AKM
form (4).

The second stage of solving by AKM is connected with a construction of the ‘approxi-
mating problem’ about the introduced unknown functions Xi(x), Yi(y), (i = 1,M). For this
purpose a variational statement of problem (3) is used. The substitution of the approximation
form (4) in the functional (3) leads to the following expression:

JM (FM) = 1

2

a∫
−a

b∫
−b


(

M∑
i=1

X
′′
i Yi

)2

+ 2

(
M∑
i=1

X′
iY

′
i

)2

+
(

M∑
i=1

XiY
′′
i

)2

dxdy

−
a∫

−a

b∫
−b

f

(
M∑
i=1

XiYi

)
dxdy . (7)

The condition of an extremum of this functional has the form:

δJM (X1, X2, ..., XM, Y1, Y2, ..., YM) = 0 ,

i.e.,

δJM =
M∑

k=1

δXk
JMδXk +

M∑
k=1

δYk
JMδYk = 0 , (8)
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where δXk
JM and δYk

JM are the partial variations of the functional JM by the functions, which
are specified in a lower index. The independence of all functions Xk(x) and Yk(y) in (8) allows
us to write them as follows:

δXk
JM = 0 , δYk

JM = 0 , (k = 1,M). (9)

Application of the well-known technique of the calculus of variations to each of the equa-
tions in (9) by accounting for the boundary conditions (2) generates a set of equations in
connection with the functions Xi(x) and Yi(y) (i = 1,M)

M∑
i=1


XIV

i

b∫
−b

YiYkdy − 2X
′
i

b∫
−b

Y ′
i Y

′
kdy + Xi

b∫
−b

Y
′′
i Y

′′
k dy


 =

b∫
−b

f Ykdy, |x| < a,

Xk (±a) = 0, X′
k (±a) = 0, (10)

M∑
i=1


Y IV

i

a∫
−a

XiXkdx − 2Y
′′
i

a∫
−a

X′
iX

′
kdx + Yi

a∫
−a

X
′′
i X

′′
kdx


 =

a∫
−a

f Xkdx, |y| < b,

Yk (±b) = 0, Y ′
k (±b) = 0,

(
k = 1,M

)
. (11)

This system consists of two one-dimensional boundary-value problems about the variable x

(the problem (10) and about the variable y (the problem (11)).
Problem (10) is formulated in terms of unknown functions Xi(x), (i = 1,M). Its coeffi-

cients and the free terms contain the functions Yi(y) in the form of definite integrals. Problem
(11), on the contrary, is formulated in terms of the functions Yi(y), (i = 1,M). Its coefficients
and the free terms contain the functions Xi(x) as definite integrals. Thus, the interrelation of
the one-dimensional problems (10) and (11) is expressed by its coefficients and free terms.

Let us notice the differences of a ‘approximating problem’ of AKM in a comparison with
‘approximating problems’ in Galerkin-Ritz’s and Kantorovich’s methods. So, the ‘approx-
imating problem’ in the Galerkin-Ritz methods is a system of algebraic equations about
unknown numerical coefficients aij from (5). In Kantorovich’s method this problem is a
system of ordinary differential equations in terms of functions Xi(x) from (6), i.e., one one-
dimensional problem. This problem is identical to the problem (10), if the unknown functions
Yi(y) in (10) are replaced by the functions ψi(y) from (6). Thus, the ‘approximating problem’
of Kantorovich’s method is a special case of the ‘approximating problem’ of AKM.

The way to construct an AKM ‘approximating problem’ to obtain a differential statement
of 3D stationary boundary-value problems in the theory of elasticity is described [6, 7].

For the determination of the functions Xi(x), Yi(y) (i = 1,M) from a system of one-
dimensional problems (10), (11) in AKM, the following iterative process is used, in which n

is a step of iterations:

M∑
i=1

(
An−1

4ik

(
Xn

i

)IV − 2An−1
2ik

(
Xn

i

)′′ + An−1
0ik Xn

i

)
= An−1

k |x| < a, (12)

Xn
k = 0,

(
Xn

k

)′ = 0; (
k = 1,M

)
atx = ±a;
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M∑
i=1

(
Bn

4ik

(
Y n

i

)IV − 2Bn
2ik

(
Y n

i

)′′ + Bn
0ikY

n
i

)
= Bn

k |y| < b, (13)

Y n
k = 0,

(
Y n

k

)′ = 0; (
k = 1,M

)
aty = ±b; (n = 1, 2, ....) .

Here

An−1
4ik =

b∫
−b

Y n−1
i Y n−1

k dy, An−1
2ik =

b∫
−b

(
Y n−1

i

)′ (
Y n−1

k

)′
dy,

An−1
0ik =

b∫
−b

(
Y n−1

i

)′′ (
Y n−1

k

)′′
dy, An−1

k =
b∫

−b

f Y n−1
k dy, (14)

Bn
4ik =

a∫
−a

Xn
i X

n
k dx, Bn

2ik =
a∫

−a

(
Xn

i

)′ (
Xn

k

)′
dx,

Bn
0ik =

a∫
−a

(
Xn

i

)′′ (
Xn

k

)′′
dx, Bn

k =
a∫

−a

f Xn
k dx. (15)

It is assumed that in each iteration step the solution of any separate one-dimensional
problem can be found (analytically or numerically) with sufficient accuracy.

As an initial form of the functions Y 0
k (y), (k = 1,M), can be chosen any linearly indepen-

dent functions and it is not required to satisfy the boundary conditions at y = ±b.
Remark. The authors have no complete proof of convergence of the explained iterative

process. A heuristic confirmation of its legitimacy can be obtained by experience of the
solution of some 2D and 3D of stationary problems of mathematical physics [6–9].

The final determination of the function u (x, y) of the initial problem (1), (2) is constructed
as a practical limit of a sequence FM(x, y) by increasing the number of terms M = 1, 2, ... in
expression (4).

Retaining one term of a series in representation (4) makes it possible to obtain the approx-
imate problem solution in analytical form. Let us give this solution to make the exposition of
the AKM structure more clear.

Assuming that the required solution is represented in the form (4) for M = 1, we assume
the following approximation for the function u(x, y):

u (x, y) ∼= X (x) Y (y) , (16)

where the two functions X(x) and Y (y) are unknown.
These functions are determined by solving the next system of the two one-dimensional

problems:

XIV − 2AxX
′′ + BxX = Cx, |x| < a, (17)

X (±a) = 0, X′ (±a) = 0 ; (18)
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Y IV − 2AyY
′′ + ByY = Cy, |y| < b, (19)

Y (±b) = 0, Y ′′ (±b) = 0 , (20)

where

Ax =

b∫
−b

(
Y ′′)2

dy

b∫
−b

Y 2dy

, Bx =

b∫
−b

(
Y ′′)2

dy

b∫
−b

Y 2dy

, Cx =

b∫
−b

f Y dy

b∫
−b

Y 2dy

, (21)

Ay =

a∫
−a

(
X′′)2

dx

a∫
−a

X2dx

, By =

a∫
−a

(
X′′)2

dx

a∫
−a

X2dx

, Cy =

a∫
−a

f Xdx

a∫
−a

X2dx

. (22)

The common solution of Equations (17), (19) has the usual form:

X (x) = D1xϕ1x (x) + D2xϕ2x (x) + D0x , (23)

Y (y) = D1yϕ1y (y) + D2yϕ2y (y) + D0y , (24)

The functions ϕ1x(x), ϕ2x(x), ϕ1y(y), ϕ2y(y) are determined in accordance with the bound-
ary conditions (18), (20) and taking into account the symmetry of the problem about the
coordinate axis by the following expressions:

ϕ1x (x) = sinh (αxx) sin (βxx) , ϕ2x (x) = cosh (αxx) cos (βxx) ,

αx = √
Bx cos

(
φx

2

)
, βx = √

Bx sin
(

φx

2

)
, φx = arctan

(√
Bx−A2

x

Ax

)
, (25)

ϕ1y (y) = sinh
(
αyy

)
sin

(
βyy

)
, ϕ2y (y) = cosh

(
αyy

)
cos

(
βyy

)
,

αy = √
By cos

(
φy

2

)
, βy = √

By sin
(

φy

2

)
, φy = arctan

(√
By−A2

y

Ay

)
. (26)

The coefficients Dix and Diy (i = 0, 1, 2) are determined by the formulae

D0x = Cx

Bx

, D1x = D0xϕ
′
2x (a)

ϕ2x (a) ϕ′
1x (a) − ϕ1x (a) ϕ′

2x (a)
,

D2x = −D0xϕ
′
1x (a)

ϕ2x (a) ϕ′
1x (a) − ϕ1x (a) ϕ′

2x (a)
, (27)

D0y = Cy

By

, D1y = D0yϕ
′
2y (b)

ϕ2y (b) ϕ′
y (b) − ϕ1y (b) ϕ′

2y (b)
,

D2y = −D0yϕ
′
1y (b)

ϕ2y (b) ϕ′
y (b) − ϕ1y (b) ϕ′

2y (b)
. (28)
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Table 1. On the convergence of the iterative process (analytical solu-
tion, monomial approximation).

A0
x;B0

x ;C0
x n Xn(0) × 103 Yn(0) × 103 un(0, 0) × 103

2;100;10 1 1·999 6·466 1·292

2 1·954 6·465 1·264

1·263

3 1·954 1·263

Table 2. Deflection and bending moment for a uniform loaded clamped plate.

M w(0, 0) × 103 D
qa4 −Mx(0, 0) × 102 1

qa2 −Mx(a
2 , 0) × 102 1

qa2

1 1·263 2·263 5·223

2 1·265 2·292 5·150

3 1·265 2·295 5·130

[15] 1·26 2·31 5·13

To determine the functions X(x) and Y (y), the following iterative procedure is used. In
the beginning some initial values of the coefficients A0

x , B0
x , C0

x , satisfying the condition B0
x −

(A0
x)

2 > 0, are chosen. Then by (23), with account taken of (25) and (27), the function X0(x)

is calculated. Further, by the function X0(x) and its derivative we determine the coefficients
A0

y , B0
y , C0

y from (22) and the function Y 0(y) from (24), (26), (28). The function Y 0(y) and its
derivative are used for the calculation of the coefficients A1

x , B1
x , C1

x from (21) and so on until
the process will converge.

Remark. In 1947 in an investigation of rectangular-plate bending, Vlasov has suggested the
idea to use the iterates for the refinement of the monomial approximation (16) ([10]). Later
this idea was realized in [11–14].

The described iterative process converges sufficiently rapidly, independently of the choice
of the initial approximation. As an example, we give the results of the problem (1), (2) for the
square a/b = 1, at f = 1 in each step of the iteration. The maximal values of the functions
Xn(x), Y n(y), un(x, y), which are calculated according to the formulas (23), (24), (16), are
given in Table 1.

As for the problem on the plate bending, the obtained solution u(x, y) is the deflection
w(x, y) of the clamped square plate with side a under a uniform load q. These results are
compared with data given in [15, Section 6.44]. A comparison of results is given in Table 2 for
the deflection at the centre of the plate and for the bending moment Mx at the centre and on the
middle of the clamped side, which were obtained by Evans and AKM ( D = Eh3/12

(
1 − ν2

)
;

E is Young’s modulus, ν is the Poisson’s ratio, h is the plate thickness, ν = 0·3). The AKM
solutions are given when a different number of the terms M in approximation series (4) are
retained.

As can be seen from Table 2, the monomial approximation of the AKM coincides with
Evans’s calculations for the maximum value of the deflection, and the error in the moment
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value is about 2%. When three terms of the series (4) of the AKM are retained, the differences
in the moments do not exceed 0·5%.

Remark. In the Advanced Kantorovich Method for multi-dimensional boundary-value prob-
lems for a number of independent variables N > 2, the required solution u(x1, x2, . . . , xN) is
represented in the form:

u (x1, x2, ..., xN) ∼= FM =
M∑
i=1

X1i (x1)X2i (x2) · · · XNi (xN),

where all functions X1i(x1), X2i(x2), . . . , XNi(xN) are unknown.
In this case the ‘approximating problem’ is a system of N one-dimensional problems about

each of the variables xn (n = 1, N).

3. Solution of a test problem

In this section we give the results of some biharmonic problems solved by the Advanced
Kantorovich Method (AKM). The problems are chosen to illustrate the efficiency of AKM in
the class of mechanical problems under consideration.

3.1. BENDING OF A SIMPLE SUPPORTED RECTANGULAR PLATE

The classic solution of the problem for bending of a rectangular plate (� = {0 ≤ x ≤ a;
0 ≤ y ≤ b}) under arbitrary normal load action q = q(x, y) has the following form (Navier
solution, 1820):

w(x, y) =
∞∑
i=1

∞∑
j=1

aij sin αix sin βjy , (29)

where αi = iπ
a

, βj = jπ

b
, aij = a′

ij

D
(
α2

i +β2
j

)2 , and a′
ij - are the coefficients of the load function

expansion in a double trigonometrical Fourier series.
The result (29) is typical for boundary-value problem solved by the classical method of

expansion about eigenfunctions (Fourier-series expansion). Here this solution is used as a
basis for efficiency estimation of the AKM and Kantorovich’s method in solving problem of
plate bending under the loads of different kind.

Application of Kantorovich’s method was based on using an approximation of the required
function w(x, y) by the following form:

w (x, y) =
∞∑

j=1
Xj (x) sin βjy (30)

(It is worth noting that M. Levy has used precisely this form for the problem on the bending
of a plate with two simply supported opposite sides as long ago as 1899).

In the first variant of the problem we considered a square plate with side a under the action
of a suitably chosen normal load which yields a sharp localized deflection of the following
form:

w∗ (x, y) = sinn αx sinm βy; (n = m = 20, α = β = π

a
) . (31)
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Figure 1. Loading forms corresponding to solution (31): (a) n = m = 20; (b) n = 20, m = 1.

Table 3. Dependence of the deflection, bending moment and errors at the point P (0·3a,
0·3a) on the number of the terms of the approximation series in the Fourier method,
Kantorovich’s method and AKM.

Number terms w(P ) × 104 D
a4 εw , % −Mx(P ) × 105 1

a2 εM , %

Fourier-series expansion

1 × 1 7·7500 × 102 3·6 × 103 −9·943 3·1 × 102

5 × 5 9·0545 × 102 9·6 × 10 1·4733 6·9 × 10

7 × 7 2·3682 1·4 × 10 4·7135 2·3
8 × 8 2·0901 0·43 4·8170 0·11

9 × 9 2·0788 0·11 4·8248 0·056

10 × 9 2·0800 0·058 4·8214 0·014

Exact solution 2·0812 4·8221

Kantorovich’s method

1 4·0161 × 10 1·8 × 103 7·1461 × 10 1·4 × 103

3 −3·9658 × 10−1 1·2 × 102 1·5752 6·7 × 10

5 4·3425 7·9 × 10 2·4037 5·0 × 10

7 2·2200 6·68 4·9765 3·2
8 2·0856 0·21 4·8265 0·09

9 2·0800 0·058 4·8213 0·016

Exact solution 2·0812 4·8221

Advanced Kantorovich method

1 2·0803 4·8 × 10−3 4·8209 2·1 × 10−3

Exact solution 2·0812 4·8221

The form of the load is shown in Figure 1a.
In Table 3 lists the values of the deflection w(x, y) and bending moment Mx(x, y) at the

point P with coordinate (0·3a, 0·3a). The calculations were carried out by method of expan-
sion, Kantorovich’s method and AKM for a various number of terms in the approximation
forms. We also give the errors of every method with respect to the values of w∗(P ) and
M∗

x (P ) which were calculated in accordance with (31) at x = 0·3a, y = 0·3a. The relative
value of the deflection w∗(P )

w∗(0·5a,0·5a)
≈ 0·0002 at this point and for this reason the error estimate

is sufficiently obvious.
It is clear that in each case the AKM is more efficient than Kantorovich’s method, which

is in its turn performs better than the method of expansion about eigenfunctions. Actually, to
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Table 4. Maximum values of the deflection, bending moment and errors at monomial
approximation in the Fourier method, Kantorovich’s method and AKM.

Method wmax
D
a4 εw , % −Mxmax × 102 1

a2 εM , %

Fourier-series 1·184 × 10−1 8·44 × 103 1·519 × 10−2 9·94 × 10

Kantorovich method 3·441 × 10−1 6·66 × 102 6·894 × 10−1 7·31 × 10

AKM 1·000 0·0 2·566 0·0
exact solution 1·000 2·566

calculate the deflection to within an error ε ≈ 0·05% in accordance with method of expansion,
we considered 10×9 terms of the Fourier series, in Kantorovich’s method we took into account
9 terms in the form (30), and when employing AKM it was sufficient to take only one term in
the approximation (4) and three iteration steps for solving the ‘approximate problem’ to carry
out.

Next in Table 4 the maximum values of the deflection and bending moment obtained by
these methods at monomial approximation in (4), (29), (30) are given.

The form of the load for the second variant is shown in Figure 1b. It was found that for
the calculation of the deflection with an error up to ε by the expansion method one should use
9 × 1 terms of the Fourier series and in Kantorivich’s method and AKM it is sufficient to take
only one term of the series in the approximation forms (30) and (4).

In the third variant of the problem the normal load corresponds to a deflection of the fol-
lowing form: w∗(x, y) = sin αx sin αy. It is obvious that for solving the problem it sufficed
to consider only one term in the approximate form of each method.

3.2. BENDING OF A CLAMPED RECTANGULAR PLATE

As in [16], in this paper we deal with the problem the bending of a plate that is clamped
along its contour with the ratio of its sides being defined by a = 2b under a load q(x, y) =
q0 = const. This makes possible for us to compare the results of solving this problem by
AKM with the analytical solution obtained by the superposition method [16], as a standard
for comparison.

We compare the distribution functions of the normal reactions Vx and Vy at the clamped
contour of the plate and its corner points:

Vx (y) = D

[
∂3w

∂x3
+ (2 − ν)

∂3w

∂x∂y2

]
x=a

, Vy (x) = D

[
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y

]
y=b

.

Such comparison is a strict test for the offered method. Indeed, since the first derivative of
the function w is discontinuous in the corner points, an inarbitrary numerical method leads to
a sufficiently accurate solution near a corner.

In Table 5 we give the values of the normal reactions in the middle of the clamped sides
x = a, y = b and in corner points (columns 2–5); the values of total normal reactions on the
sides x = a, y = b are given in columns 6, 7; the value of the sum reactions to verify the
conditions of the static equilibrium of the plate is in column 8 and the values of the solution
error relative to the condition of the static equilibrium in column 9. The data in the rows (1–3)
are calculated for a various number of terms M in the representation (4). In the rows 4 and
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Table 5. Normal reactions at the clamped sides of the rectangular plate, a = 2b,
according to method of superposition.

M
Vx(0)
q0 b

Vx(b)
q0 b

Vy(0)

q0 b

Vy(a)

q0 b
Rx

q0 ab

Ry

q0 ab

Rx+Ry

p0 ab ε, %

1 0·965 0 1·137 0 0·519 1·467 1·986 0·7
2 0·948 0 1·031 0 0·510 1·494 2·004 0·2
3 0·932 0 1·032 0 0·500 1·502 2·002 0·1
[16] (1) 0·931 −0·035 1·037 −0·036 0·499 1·501 2·000 0·0
[16] (2) 0·928 0 1·032 0 0·502 1·498 2·000 0·0

Figure 2. Distribution of the normal stresses in a beam with a localized load: (a) a schematic sketch of the problem;
(b) distribution of the stresses

σy

σmax
(solid line corresponds to (32), dotted one is AKM).

5 of this table we give the analytical results in accordance with the superposition method for
two variants of its realization [16].

A comparison of the results obtained by AKM with the data from [16] permit to draw the
following conclusions.

Calculations in accordance with AKM at M = 1 yields an error with the respect to the
condition of the static equilibrium that is approximately equal to 0·7 %; however, the functions
of the normal reactions Vx and Vy on the clamped sides, as distinguished from [16], are
monotonous. Calculations for M = 3 by AKM leads to a decrease of the mentioned error
to 0·1%. At the same time the normal reactions on the contour are non-monotonic functions
with negative values close to the corner points that correspond to the results [16].

3.3. PLANE STRESSED STATE OF A BEAM WITH A RECTANGULAR CROSS-SECTION

The different variants of this problem were considered by many scientists in the first half of
the last century. Here we report the solution in accordance with AKM of the problem which
was taken from Filon’s paper [17].

We examined a long narrow strip under a load of intensity q, which is localized on the
short section of the boundary contour, the length of which is 2a, so that P = 2aq (Figure 2).

According to [17] the distribution of the normal stresses in the plane y = 0 is determined
by the following formula:

σy = −qa

l
− 4a

π

∞∑
m=1

sin mπa
l

mπc
l

cosh mπc
l

+ sinh mπc
l

sinh 2mπc
l

+ 2mπc
l

cos
2mπx

l
. (32)
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Figure 3. The form of the deformed anisotropic plate: (a) ψ = 0; (b) ψ = 0·75π ; (c) ψ = 0·.5π (the dashed line
represents the contour of the non-deformed plate).

Table 6. Values of the relative stress
σy

σmax
at x

c

= 0·5 and x
c = 1·0 and the number of the

approximation terms according to (32) and AKM.

x
c Stress

σy

σmax
Number terms

(32) AKM (32) AKM

0·5 0·543 0·543 14 3

1·0 0·099 0·098 10 3

By using AKM we formulate the biharmonic equation (1) about the stress function φ(x, y)

in the domain � = {|x| ≤ l, |y| ≤ c}. The boundary conditions have the following form:
the sides y = ±c are loaded by a localized stress σy of the given aspect and the sides |x| = l

are free from load. The calculations were carried out for the data: c = 40, l = 200, a = 1·2.
The distribution of the normal stresses σy/σmax according to AKM and to [17] is shown in

Figure 2b.
In Table 6 we give the number of terms of the series (32) and in approximate AKM form,

which are needed for the calculation of the function σy with a relative error ε < 1·1%.
It is immediately obvious that using AKM for the solution of this problem is preferred to

the method proposed in [17].

3.4. PLANE DEFORMATION OF AN ANISOTROPIC PLATE

The three foregoing problems had known solutions which were used in discussing the effi-
ciency of AKM. In certain sense the problem that will be discussed now is new, although the
qualitative results of its solution are obvious.

The problem on plane deformation of a square plate with side a is examined. One side
(x = 0) of its boundary contour is clamped, but the opposite side (x = a) is under the
action of the uniform load σx . The sides y = 0, y = a of the contour are free. The plate is
made of orthotropic material and its main direction of elasticity E1 and E2 can be oriented
arbitrarily about the boundary contour. In this case the latter leads to the passage from classical
biharmonic equation to its generalized form [18, p. 136].

The material of the plate is carbon-fibre-reinforced plastic with the following properties:
E1
E2

= 40, G12
E2

= 0·5, ν = 0·25.
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The orientation of the material about the plate boundary is defined by the angle ψ between
the direction of the maximum modulus of elasticity E1 and the positive direction of the co-
ordinate axis 0x. Figure 3 illustrates the form of the deformed plate for the various values of
ψ .

It is clear that minimum displacements happen when the directions of the load σx and
maximum modulus E1 coincide, maximum displacements correspond to the orientation ψ =
0·5π and appreciable distortion of the plate occurs at ψ = 0·75π .

4. Conclusions

Completing the presentation of the Advanced Kantorovich Method, it is safe to say that this
method is an efficient means for solving many-dimensional stationary problems of the theory
of elasticity. The advantages of AKM have been shown for examples of classical problems
such as the bending of a thin rectangular plate and the plane strain problem. Let us mention
these advantages:
1. The problem of adequate choice of trial functions is absent.
2. AKM allows to reveal fine mechanical effects. For this it is sufficient to take three terms

in the approximative form (4) and to execute four steps of the iterative procedure.
3. The dimensions of all internal algebraic and ordinary differential equations in the AKM

algorithm grows as linear function with respect the number of independent variables in
the region.

In other approximate approaches (for instance Galerkin-Ritz’s methods, the eigenfunctions
expansion) the specified dependence is exponential. This feature allows one to use AKM for
solving effectively 3D mechanical boundary-value problems [7–9].
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